The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 X 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 a a^2*X+a^2 0 a^2*X+1 a^2*X+a^2 a 1 a*X+a^2 X a^2*X+1 X+a 1 X 1 X+a a*X+a^2 1 0 X a^2*X+1 a*X+1 a*X+1 X+a a*X+a a*X+a a*X a*X a*X+1 a a*X 1 a*X+a a*X+a^2 a^2*X+a^2 X+a^2 X+a^2 X+a^2 a*X 0 X a*X+1 1 a X+a a^2*X+1 a*X+a a^2*X X+1 a^2*X 0 0 a^2*X a*X X X 0 a^2*X 0 a*X a*X a^2*X a*X X X a*X X a^2*X 0 a^2*X a*X X X a^2*X 0 a*X 0 X a^2*X 0 a*X a^2*X X 0 a*X a^2*X 0 X a*X 0 a*X a^2*X 0 X a*X X 0 a^2*X a^2*X a^2*X 0 a*X generates a code of length 52 over F4[X]/(X^2) who´s minimum homogenous weight is 152. Homogenous weight enumerator: w(x)=1x^0+126x^152+168x^153+108x^154+213x^156+180x^157+72x^158+90x^160+12x^162+36x^165+12x^168+3x^172+3x^192 The gray image is a linear code over GF(4) with n=208, k=5 and d=152. This code was found by Heurico 1.16 in 0.015 seconds.